ارزیابی عملکرد توابع کرنل در تخمین جریان رودخانه ها با استفاده از ماشین بردار پشتیبان
Authors
abstract
سابقه و هدف: پیش بینی دقیق رواناب رودخانه ها نقش مهمی در مدیریت بهینه منابع آب در دسترس دارد. در سال های اخیر، ماشین بردار پشتیبان (svm) که یکی از مهمترین مدل های داده کاوی است برای این منظور مورد توجه قرار گرفته است. این مدل یک سیستم یادگیری کارآمد بر مبنای تئوری بهینه سازی مقید است که از اصل استقرای کمینه سازی خطای ساختاری استفاده کرده و منجر به یک جواب بهینه کلی می گردد. همانند مدل های داده کاوی دیگر مدل svm نیز می تواند در مواقعی که فقط داده های رواناب در دسترس می باشد جهت شبیه سازی رواناب مورد استفاده قرار گیرد (مدل سازی خودهمبسته). به طور معمول سه تابع کرنل پایه شعاعی (rbf)، چند جمله ای درجه d و خطی در ماشین بردار پشتیبان مورد استفاده قرار می گیرند که کاربرد هر یک از این توابع با پارامترهای مختلف در تخمین رواناب رودخانه ها ممکن است منجر به نتایج متفاوتی شود. بنابراین ارزیابی کارایی و دقت هر یک از این توابع و انتخاب تابع کرنل مناسب در پیش بینی جریان رودخانه ضروری است. همچنین از آنجا که مدل های سری زمانی ar، arma و arima از مد ل های اصلی در شبیه سازی خودهمبسته رواناب می باشند لذا می توان از طریق مقایسه عملکرد هر یک از توابع کرنل با این مدل ها، دقت نسبی این توابع در این زمینه را مورد بررسی قرار داد. بنابراین ارزیابی دقت هر یک از توابع کرنل در شبیه سازی رواناب ماهانه و مقایسه عملکرد آنها با مدل های سری زمانی هدف اصلی این تحقیق را رقم می زند. مواد و روش ها: در این تحقیق حوضه خرخره چای به عنوان منطقه مورد مطالعه انتخاب شده و جریان ماهانه مشاهداتی این حوضه در ایستگاه آب سنجی سنته جهت واسنجی و اعتبارسنجی مدل ها بکار گرفته شد. برای این منظور، در ابتدا 75 درصد از داده های جریان ماهانه (1384-1367) برای واسنجی مدل ها انتخاب شده و 25 درصد داده ها (1390-1385) جهت اعتبارسنجی مدل ها استفاده شد. سپس توزیع احتمالاتی داده های جریان ماهانه در ایستگاه آب سنجی سنته براساس آزمون-های کلموگروف- اسمیرنوف و شاپیرو- ویلک مورد بررسی قرار گرفته و نرمال سازی توزیع داده ها انجام گرفت. پس از بهینه سازی پارامترهای مربوط به هر یک از توابع کرنل، مقادیر جریان ماهانه در ایستگاه آب سنجی سنته پیش بینی شده و عملکرد این توابع با استفاده از جذر میانگین مربعات خطا (rmse) و ضریب همبستگی (cc) مورد ارزیابی قرار گرفت. یافته ها: بررسی های این تحقیق نشان داد که اگرچه تفاوت معنی دار بین نتایج سه تابع کرنل وجود ندارد، ولی تابع کرنل چند جمله ای درجه 4 با مقادیر ضریب همبستگی و جذر میانگین مربعات خطا به ترتیب برابر با 86/0 و 88/5 (مترمکعب در ثانیه) در دوره تست، در مقایسه با توابع کرنل دیگر از دقت بالا و عملکرد بهتری در پیش بینی جریان ماهانه برخوردار است. همچنین نتایج نشان داد که مدل (6،2)arma با مقادیر ضریب همبستگی و مجذور میانگین مربعات خطا به ترتیب برابر با 82/0 و 47/6 (مترمکعب در ثانیه) در دوره تست، نسبت به سایر مدل های سری زمانی عملکرد خوبی را در پیش بینی جریان ماهانه حوضه خرخره چای دارا می باشد. نتیجه گیری: در نهایت مقادیر جریان ماهانه پیش بینی شده با استفاده از تابع کرنل چند جمله ای درجه 4 (به عنوان نماینده مدل svm) با نتایج مدل (6،2)arma (به عنوان نماینده مدل های سری زمانی) مقایسه گردید و این نتیجه حاصل شد که مدل svm از کارایی بهتری نسبت به مدل های سری زمانی در پیش بینی جریان ماهانه حوضه خرخره چای برخوردار است.
similar resources
ارزیابی عملکرد توابع کرنل در تخمین جریان رودخانهها با استفاده از ماشین بردار پشتیبان
سابقه و هدف: پیشبینی دقیق رواناب رودخانهها نقش مهمی در مدیریت بهینه منابع آب در دسترس دارد. در سالهای اخیر، ماشین بردار پشتیبان (SVM) که یکی از مهمترین مدلهای دادهکاوی است برای این منظور مورد توجه قرار گرفته است. این مدل یک سیستم یادگیری کارآمد بر مبنای تئوری بهینهسازی مقید است که از اصل استقرای کمینهسازی خطای ساختاری استفاده کرده و منجر به یک جواب بهینه کلی میگردد. همانند مدلهای داده...
full textارزیابی و عملکرد مدل ماشین بردار پشتیبان در تخمین رسوبات معلق رودخانه ها
همواره پدیده انتقال رسوب، بسیاری از سازه های رودخانه ای و سازه های عمرانی را تحت تأثیر قرار داده و عدم اطلاع از میزان دقیق آن خسارات بسیاری را موجب می شود .از این جهت دستیابی به روشی با دقت مناسب برای تخمین میزان بار رسوبی معلق رودخانه ها بسیار حایز اهمیت است. در این پژوهش جهت تخمین رسوبات رودخانه کاکارضا واقع در استان لرستان، از مدل ماشین بردار پشتیبان استفاده گردید و نتایج آن با برنامه ریزی ب...
full textتأثیر بازه بندی هیدرولیکی در تخمین بار بستر رودخانه های با بستر شنی با استفاده از ماشین بردار پشتیبان
ارزیابی و برآورد انتقال رسوب و فرایندهای همراه با آن، از دیرباز یکی از مسائل عمده و اصلی مهندسان هیدرولیک و رودخانه بوده است. رودخانههای با بستر شنی، ویژگیهایی دارند که آنها را از رودخانههای با بستر ماسهای متمایز کرده و باعث ایجاد مسائل و چالشهایی...
full textمقایسه عملکرد روش های ماشین بردار پشتیبان و شبکه های بیزین در پیشبینی جریان روزانه رودخانه (مطالعه موردی: رودخانه باراندوزچای)
پیشبینی و برآورد جریان رودخانه برای هر منطقه و حوضه آبریز به عنوان یکی از مهمترین مراحل در استفاده بهینه از منابع آبی محسوب میشود. در مطالعه حاضر به منظور پیشبینی جریان رودخانه باراندوزچای از دو روش ماشین بردار پشتیبان (SVM) و شبکههای بیزین (BNs) استفاده شد. دادههای جریان روزانه این رودخانه در محل ایستگاه آبسنجی دیزج در خلال سالهای 1385 تا 1389 برای ایجاد مدل استفاده شد که 80 درصد دادهها...
full textتخمین مشخصات هیدرولیکی کانالهای واگرای مستهلک کننده انرژی با استفاده از روش ماشین بردار پشتیبان
Hydraulic jump is the most common method of dissipating water’s kinetic energy in downstream of spillways, shoots and valve. In this paper, Support Vector Machine (SVM) method, as a machine learning method, have been used to estimate hydraulic characteristics such as the sequent depth ratio, jump length and energy loss in three different sudden expansions stilling basins, and the rate of ...
full textمدل سازی رواناب رودخانه صوفی چای با استفاده از ماشین بردار پشتیبان و شبکه عصبی مصنوعی
Accurate simulation runoff process can have a significant role in water resources management and related issues. The inherent complexity of this process makes difficult the use of physical and numerical models. In recent years, application of intelligent models is increased a powerful tool in hydrological modeling. The aim of this study was the application of the Gamma test to select the optim...
full textMy Resources
Save resource for easier access later
Journal title:
پژوهش های حفاظت آب و خاکجلد ۲۳، شماره ۳، صفحات ۶۹-۸۹
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023